(faculi	y stamp) COURSE DESCRI	PTION	Z1-PU7	WYDANIE N1	Strona 1 z 2	
1. Co	burse title: PERFORMANCE EVALUATION OF	FCOMPUTER	2. Course code	9		
NET	WORKS		PECN			
3. Va	Alidity of course description: 2012/2013					
4. Le	evel of studies: MSC					
J. 101		T				
6. Fi	eld of study: informatics		RAU			
7. Pr	offie of studies: general academic					
0. PI 9 Se	ogramme					
10. F	aculty teaching the course: Faculty of Automatic C	ontrol. Electronics and Corr	puter Science			
11. 0	Course instructor: Prof. dr hab. inż. Tadeusz Czac	hórski				
12. 0	Course classification: common					
13. 0	Course status: compulsory					
14. L	anguage of instruction: English					
15. F	Pre-requisite qualifications: knowledge of probabilit	y theory and stochastic pro	cesses on the le	vel taught at BA	courses; rudime	ents of
com	puter networks architectures and principles of their per	formance, especially of the	performance of	communication p	rotocols (TCP/I	P)
16. C	Course objectives: to achieve skills in the use of math	nematical methods used in	modelling and pe	erformance evalua	ation of comput	er
netw	orks.					
17. C	Description of learning outcomes:					
Nr	Learning outcomes description	Method of assessment	Teach	ning methods	Lea out refere	arning comes nce code
1.	Student gets knowledge on operational models, Markov chain models, diffusion approximations queueing models of computer networks	test	Lecture		K_	_W04
2.	Student gets knowledge on mean value analysis applied to model computer networks.	test	Lecture		K_	_W01
3.	Student is able to apply analytical models, e.g. Markov chain models, in the performance analysis of computer networks.	test	Lecture, Laborato	ry	K.	_U10
4.	Student is able to apply the acquired knowledge of simulation models to evaluate performances of computer networks. Student is able to evaluate simulation errors.	test	Laboratory		K	_U09
5.	Student is able to apply the acquired knowledge to study the performances of a proposed topology of a computer networks.	test	Laboratory		K	_U08
18. T	eaching modes and hours					
Lectu	ıre / BA /MA Seminar / Class / Project / Laboratory+-					

Sem 8: lecture - 15 h, laboratory - 15 h

19. Syllabus description:

Lecture:

Operational models of computer networks: basic laws for the resource utilization, throughput and response time. Definition of a network bottleneck. Queueing networks as a model of a communication network - the use of mean value analysis (MVA), models of the open and closed network, introduction of multiple classes of customers, the use of approximate MVA algorithm. MVA algorithm in analysis of TCP congestion avoidance mechanism and the transport time evaluation. Optimization of a "connection power" parameter. Investigation of TCP connection stability with the use of control theory approach.

Simple probabilistic queueing models and their justification. Single server models based on Markov chains, introduction of limited queue and loss probability, parallel service channels, limited set of customers; examples of a router and a local network models. Queueing Markov models of an open and closed network, related computational algorithms. Models of traffic intensity based on Markov chains and hidden Markov chains. Markov models solved numerically and their application in the analysis of congestion

avoidance (threshold, leaky-bucket, sliding window, jumping window, push-out queue) algorithms.

Models of all optical networks routing, a model of electrical-optical edge router. Diffusion and fluid flow approximations in the analysis of transient states, application to the analysis of packet queues in IP routers, models of active queue management (e.g. random early deletion) in IP routers. Statistical properties of internet traffic (self-similarity, long term autocorrelation) and their influence on network performance.

Laboratory: Simple simulation queueing models and models of computer networks written with the use of OMNET++ system.

20. Examination: no examination

21. Primary sources:

1. T. Czachórski, "Modele kolejkowe w ocenie efektywności sieci i systemów komputerowych", Wydawnictwo Pracowni Komputerowej Jacka Skalmierskiego, Gliwice 1999.

22. Secondary sources:

1. M. Hassan and R. Jain, "High Performance TCP/IP Networking: Concepts, Issues, and Solutions", Prentice-Hall, 2003, ISBN:0130646342, ISBN:0131272578

2. R. Jain, The Art of Computer Systems Performance Analysis, Wiley Interscience 1991 23. Total workload required to achieve learning outcomes

Lp.	Teaching mode :	Contact hours / Student workload hours
1	Lecture	15/15
2	Classes	
3	Laboratory	15/15
4	Project	1
5	BA/ MA Seminar	1
6	Other	1
	Total number of hours	
24. Tota	I hours: 30	
25. Num	ber of ECTS credits:	
26. Num	ber of ECTS credits allocated for contact he	ours:
27. Num	ber of ECTS credits allocated for in-practice	e hours (laboratory classes, projects):
26. Com	ments:	

26. Comments:

Approved:

(date. Instructor's signature)

(date , the Director of the Faculty Unit signature)