

(faculty stamp) COURSE DESCRIPTION

1. Course title: CONCURRENT PROGRAMMING 2. Course code: CCP

3. Validity of course description: 2016/2017

4. Level of studies: 2nd cycle of higher education

5. Mode of studies: intramural studies

6. Field of study: MACROFACULTY

7. Profile of studies: general academic

8. Programme: COMPUTER SCIENCE (INFORMATICS)

9. Semester: 1

10. Faculty teaching the course: Institute of Informatics

11. Course instructor: dr inż. Jacek Widuch

12. Course classification: common courses

13. Course status: compulsory

14. Language of instruction: English

15. Pre-requisite qualifications: It is assumed that the student has the basic knowledge of computer
programming in the C/C++ language and problems presented in subjects of 1st cycle of higher
education: Computer Programming, Algorithms and Data Structures.

16. Course objectives: The course introduces students into the basic subjects of parallel computing and
concurrent programming. The fundamental concepts of parallel computing, models of parallel
computations and architectures of parallel computers, designing of parallel algorithms are discussed.
Some libraries and programming languages supporting parallel computing are discussed. The lecture
provides basic information that is then used in practice in laboratory and classes.

17. Description of learning outcomes:

Nr Learning outcomes description
Method of
assessment

Teaching methods
Learning outcomes

reference code

1 Student possesses advanced
knowledge of models of parallel
computations, basic parallel
algorithms and designing of
parallel algorithms.

Written exam, test
on classes,
laboratory exercises

Lectures, Classes,
Laboratory
exercises

K2A_W23, K2A_W29

2 Student possesses detailed
knowledge of OpenMP
standard.

Written exam,
laboratory exercises

Lectures,
Laboratory
exercises

K2A_W23, K2A_W29

3 Student is able to use the
library for thread management.

Written exam,
laboratory exercises

Lectures,
Laboratory
exercises

K2A_U18

4 Student is able to use the
methods for solving
synchronization of parallel
processes in the model with
shared memory.

Written exam, test
on classes,
laboratory exercises

Lectures, Classes,
Laboratory
exercises

K2A_U08

5 Student is able to run parallel
processes and designing of
parallel algorithms and
analyzing them.

Written exam, test
on classes,
laboratory exercises

Lectures, Classes,
Laboratory
exercises

K2A_U02, K2A_U10,
K2A_U17

18. Teaching modes and hours
Lecture: 30 h., Class: 30 h., Laboratory: 30 h.

19. Syllabus description:

 Lectures:

1. Definitions of parallel algorithm and concurrent process. Parameters of parallel algorithm (time
complexity, speed-up, cost of the algorithm, efficiency).

2. Models of parallel computations and architectures of parallel computers. Super-computers with high
performance.

3. Expressing concurrency: fork-join-quit statements, cobegin-coend block, parfor statement.
4. Correctness of parallel algorithms: deadlock, starvation, critical section, mutual exclusion.
5. Communication and synchronization of parallel processes in the model with shared memory.

Synchronization objects: mutex, semaphore, monitor, conditional variable.
6. Communication and synchronization of parallel processes in the model with distributed memory: sending

and receiving messages, synchronous and asynchronous communication, buffered communication,
selective communication (guarded statements).

7. Fundamental problems of concurrent programming: the producer-consumer problem, the dinning
philosophers problem, the readers-writers problem, the barrier synchronization.

8. Multithreading in C++11 standard.
9. The OpenMP standard.
10. The MPI standard.

Class:

During classes tasks with the following topics are solved:
1. Expressing the concurrency.
2. Correctness of parallel algorithms: deadlock, starvation, critical section, mutual exclusion.
3. The communication of parallel processes in the model with shared memory, the synchronization using

mutexes and semaphores.
4. The communication of parallel processes in the model with shared memory, the synchronization using

monitors.
5. The communication and the synchronization of parallel processes in the model with distributed memory.

Laboratory:

Laboratory exercises presents the practical related to communication and synchronization of parallel processes
and threads. The following standards supporting parallel programming are presented:

1. Multithreading in C++11 standard.
2. The OpenMP standard.
3. The MPI standard.

20. Examination: yes

21. Primary sources:

1. T. Wittwer: An Introduction to Parallel Programming. VSSD, 1st edition, 2006.
2. P. Pacheco: An Introduction to Parallel Programming. Morgan Kaufmann; 1st edition, 2011.
3. A. Williams: C++ Concurrency in Action: Practical Multithreading. Manning Publications; 1st edition, 2012.
4. P.S. Pacheco: Parallel programming with MPI. Morgan Kaufman, 1997.
5. B. Chapman, G. Jost, R. van der Pas: Using OpenMP. MIT Press, 2008.
6. R. Chandra, R. Menon, L. Dagum, D. Kohr, D. Maydan, J. McDonald: Parallel programming In OpenMP.

Morgan Kaufamnn, 2001.
7. M. Ben-Ari: Principles of Concurrent and Distributed Programming. Pearson, 2nd edition, 2006.
8. Z. Czech: Wprowadzenie do obliczeń równoległych. Wydawnictwo Naukowe PWN, Warszawa 2010 (in

Polish).
9. Z. Weiss, T. Gruźlewski: Programowanie współbieżne i rozproszone. WNT, Warszawa 1993 (in Polish).
10. M. Ben-Ari: Podstawy programowania współbieżnego i rozproszonego. WNT, Warszawa 1996 (in Polish).

22. Secondary sources:

1. I. Parberry: Parallel Complexity Theory (Research notes in theoretical computer science). Financial Times
Prentice Hall, 1987.

2. T. Tauber, G. Rünger: Parallel Programming for Multicore and Cluster Systems. Springer-Verlag Berlin
Heidelberg, 2013.

3. G. Em Karniadakis, R.M. Kirby II: Parallel Scientific Computing in C++ and MPI: A Seamless Approach to
Parallel Algorithms and their Implementation. Cambridge University Press; PAP/CDR edition, 2003.

4. B. Parhami: Introduction to Parallel Processing: Algorithms and Architectures. Springer US, 1999.
5. M. Herlihy, N. Shavit: The Art of Multiprocessor Programming. Morgan Kaufmann; 1st edition, 2012.
6. W. Gropp, E. Lusk, N. Doss, A. Skjellum: A high-performance, portable implementation of the MPI message

passing interface standard. Parallel Computing, vol. 22, no 6, pp 789-828, 1996.
7. W. Gropp, E. Lusk: User's Guide for mpich, a Portable Implementation of MPI. ANL-96/6, Mathematics and

Computer Science Division, Argonne National Laboratory, 1996.
8. Z. Weiss, T. Gruźlewski: Programowanie współbieżne i rozproszone w przykładach i zadaniach. WNT,

Warszawa 1993 (In Polish).

23. Total workload required to achieve learning outcomes

Lp. Teaching mode : Contact hours / Student workload hours

1 Lecture 30 / 15

2 Classes 30 / 30

3 Laboratory 30 / 30

4 Project

5 BA/ MA Seminar

6 Other 0 / 15

 Total number of hours 90 / 90

24. Total hours: 180

25. Number of ECTS credits: 6

26. Number of ECTS credits allocated for contact hours: 1

27. Number of ECTS credits allocated for in-practice hours (laboratory classes, projects): 2

26. Comments:

 Approved:

 ……………………………..... …………………………………………………............
(date, Instructor’s signature) (date, the Director of the Faculty Unit signature)

