

(faculty stamp) COURSE DESCRIPTION

1. Course title: INTRODUCTION TO COMPILERS 2. Course code: ItC

3. Validity of course description: 2017/2018

4. Level of studies: 2nd cycle of higher education

5. Mode of studies: intramural studies

6. Field of study: MACROFACULTY

7. Profile of studies: general academic

8. Programme:

9. Semester: II

10. Faculty teaching the course: Faculty of Automatic Control, Electronics and Computer Science

11. Course instructor: dr inż. Przemysław Szmal

12. Course classification: specialization courses

13. Course status: compulsory

14. Language of instruction: English

15. Pre-requisite qualifications: ability to program in C language

16. Course objectives:
The goal of the course is to present selected problems connected to programming language description
and compiler construction. The student masters algorithms and methods for lexical and syntactic
analysis, as well as ways of extending them for translation purposes. Topics suitable for construction of
simple translators met in programmer’s practice – command interpreters, macro-generators, linkers and
so on – are covered.

17. Description of learning outcomes:

Nr Learning outcomes description
Method of
assessment

Teaching methods
Learning outcomes

reference code

1 Knowledge in the scope of
specifying programming
languages

Test Lecture,
laboratory classes

K2A_W05

2 Knowledge in the scope of
compiler operation and
construction

Test Lecture,
laboratory classes

K2A_W05

3 Knowledge of the lexical layer
of programming languages

Test Lecture,
laboratory classes

K2A_W05

4 Ability to perform syntactic
analysis of texts

Test,
laboratory task

Lecture,
laboratory classes

K2A_U06, K2A_U14

5 Ability to use lex and yacc
analysers

Test,
laboratory task

Laboratory classes K2A_U06, K2A_U14

18. Teaching modes and hours
Lecture 30 h / BA/MA Seminar – / Class – / Project – / Laboratory 30 h

19. Syllabus description:

Lectures:

Essence of programming language machine translation: generating equivalent programs expressed in another
language. Lexical, syntactic and semantic layers of programs. Connections with the construction of the language
virtual machine. Characteristic stages in translating programs to target form: compilation and its phases,
consolidation. Translation schema variants.
Language description methods and using them in the text analysis stage. Formal grammars, Chomsky’s
classification.
Lexical layer of programming languages – regular grammars. (Stack-less) nondeterministic, deterministic finite-
state automata.
The syntactic layer – context-free grammars. Grammar transformations: left recursion elimination, (left)
factorization, disambiguation.
Top-down syntax analysis: deterministic analysers based on the recursive descent principle, non-recursive
predictive analysis; LL-grammars. Construction of parse-driving table.
Bottom-up syntax analysis. Simple- and operator-precedence grammars – analysis algorithm, construction of
parse-driving table. Evaluating precedence functions. LR-grammars. Analysis algorithm, construction of simple
(SLR) canonical (LR), look-ahead (LALR) LR-analysers.
Semantic analysis according to the principles of syntax directed translation.
Selected information on intermediate code, output code, and run-time organization.

Laboratory:
The aim of the laboratory classes is to get students practically acquainted with techniques of building text
processors, whose action can be described by means of regular expressions and a subclass of context-free
grammars. At the beginning, the students recognize lex and yacc – how to build simple and nuanced lex and yacc
specifications and how to use and debug resulting lexers and parsers. Then the students are assigned individual
projects involving parsing mechanisms; the projects should be completed at home and presented at the end of the
semester.

20. Examination: no

21. Primary sources:

A.V.Aho, M.S. Lam, R. Sethi, J.D. Ullman: “Compilers. Principles, techniques, and tools. Second edition”. Addison-
Wesley, Reading, MA, 2006 (also available for free-download in a .pdf form at http://www.pdf-search-
engine.com/aho-sethi-ullman-pdf.html)

22. Secondary sources:

Ch. Donnelly, R. Stallman: Bison. The YACC-compatible Parser Generator.
http://www.gnu.org/software/flex/manual ,
http://www.gnu.org/software/bison/manual/
T. Niemann, "A Compact Guide to Lex & Yacc", http://www.epaperpress.com/lexandyacc/
http://dinosaur.compilertools.net/

23. Total workload required to achieve learning outcomes

Lp. Teaching mode : Contact hours / Student workload hours

1 Lecture 30 / 15

2 Classes - / -

3 Laboratory 30 / 45

4 Project - / -

5 BA/MA Seminar - / -

6 Other - / -

 Total number of hours 60 / 60

24. Total hours: 120

25. Number of ECTS credits: 4

26. Number of ECTS credits allocated for contact hours: 2

27. Number of ECTS credits allocated for in-practice hours (laboratory classes, projects): 1

26. Comments: –

 Approved:

 ……………………………..... …………………………………………………............
(date, Instructor’s signature) (date, the Director of the Faculty Unit signature)

