1. Course title: SOFT COMPUTING, Scientific computing			2. Course code SC_SC	
3. Validity of course description: 2018/2019				
4. Level of studies: MSc programme				
5. Mode of studies: intramural studies				
6. Field of study: CONTROL, ELECTRONIC AND INFORMATION ENGINEERING (MACRO)			(FACULTY SYMBOL) RAU-2	
7. Profile of studies: ACADEMIC				
8. Programme: DATA SCIENCE				
9. Semester: 1				
10. Faculty teaching the course: Faculty of Automatic Control, Electronics and Computer Science				
11. Course instructor: Prof. dr hab. inż. Sebastian Deorowicz				
12. Course classification: common courses				
13. Course status: compulsory/elective				
14. Language of instruction: English				
15. Pre-requisite qualifications: Computer programming, Algorithms and Data Structures				
16. Course objectives: The aim of the course is making students familiar with computing techniques for science and engineering. The course is focused on the use of supercomputing centers and computing clusters.				
17. Description of learning outcomes:				
Nr	Learning outcomes description	Method of assessment	Teaching methods	Learning outcomes reference code
1.	Student knows supercomputer architecture.	Exam	Lecture	K2A_W15
2.	Student knows programming techniques for high efficiency computations.	Exam	Lecture	K2A_W16
3.	Student is able to design simple applications for high efficiency computing.	Project tasks	Project	K2A_U01
4.	Student is able to construct simple implementation in the area of high efficiency computing.	Project tasks	Project	K2A_U02
5.	Student is able to verify in practice quality of applications of high efficiency computing.	Project tasks	Project	K2A_U03
6.				
7.				
8.				
9.				
18. Teaching modes and hours Lecture 15/BA/MA Seminar / Class /Project 15 / Laboratory				

19. Syllabus description:

Lecture:

1. Large-scale computations.
2. Clusters and grids.
3. Supercomputers.
4. Storage systems in supercomputing centres.
5. Programming for supercomputers.
6. Case studies.

Project:

1. Project and sample implementation solving some scientific or engineering problems at supercomputer platform.
2. Examination: semester 1

21. Primary sources:

P. Czarnul, Parallel Programming for Modern High Performance Computing Systems, 2018.
G. Hager, G. Wellein, Introduction to High Performance Computing for Scientists and Engineers, 2010.
22. Secondary sources:
J. Jeffers, J. Reinders, Intel Xeon Phi Processor High Performance Programming: Knights Landing Edition, 2016.
23. Total workload required to achieve learning outcomes

Lp.	Teaching mode :	Contact hours / Student workload hours
1	Lecture	$15 / 30$
2	Classes	$/$
3	Laboratory	$/$
4	Project	$15 / 30$
5	BA/ MA Seminar	$/$
6	Other	$/$
	Total number of hours	$30 / 60$

24. Total hours: 90
25. Number of ECTS credits: 3
26. Number of ECTS credits allocated for contact hours: 1
27. Number of ECTS credits allocated for in-practice hours (laboratory classes, projects): 2
28. Comments:
