1. Course title: DATA MINING, Knowledge disco		covery	2. Course code DM_KD	
3. Va	lidity of course description: 2018/2019		1	
4. Le	vel of studies: MSc programme			
5. M	ode of studies: intramural studies			
6. Fi	eld of study:		(FACULTY SYMBOL)	
CON	TROL, ELECTRONIC AND INFORMATION ENGINE	ERING (MACRO)	RAU-2	
7. Pr	ofile of studies: ACADEMIC			
8. Pr	ogramme: DATA SCIENCE			
9. Se	mester: 2			
10. F	aculty teaching the course: Faculty of Automatic Co	ontrol, Electronics and Com	nputer Science	
11. C	course instructor: Dr hab. Marek Sikora prof. nzw.			
12. 0	course classification: common courses			
13. C	course status: compulsory-/elective			
14. L	anguage of instruction: English			
15. F	re-requisite qualifications: Discrete Mathematic	cs, Algorithms and da	ta structures, Machine Learning	, Soft
Con	nputing, Statistical Learning,			
16. C	course objectives: The aim of the course is to make t	he students familiar with th	ne methods of knowledge discovery in a	data (particularly in
datal	pases). The methods for building tree and rule based o	classification, regression, s	urvival (survival analysis data models v	vill be presented.
The	oundations of the rough set theory will be discussed a	long with its application in	knowledge discovery.	
17. C	escription of learning outcomes:			
Nr	Learning outcomes description	Method of assessment	Teaching methods	Learning outcomes reference code
	Student knows methods of knowledge discovery			
1.	based on rough set theory. Knows definitions of the	Exam	Lecture	K2A_W01,
	rough set, reduct.			K2A_W03
	Student knows method of rule induction and rules			
2.	for classification, regression and survival analyses	Exam	Lecture	K2A_W02,
	tasks.			K2A_W03
3.	Student knows methods of induction of association rules.	Exam	Lecture	K2A_W02, K2A_W03
Δ	Student knows methods of verification and	Exam	Lecture	K2A_W02,
т.	selection of rule based data models.			K2A_W03
	Student is able to use the algorithm for			
5.		Laboratory tasks	Laboratory	K2A U14.
	induction trees and rules to tasks of	Laboratory tasks	Laboratory	$V_{0} \wedge U_{1}$

	Stu	udent can perform selection of the most			K2A 1118
6.	int	eresting rules. Can define subjective	Laboratory tasks	Laboratory	K2A_U19,
	per	rformance measures.			K2A_U23
_	Stı	udent can realize tasks of analysis based			K2A_U14,
7.	on	association rules induction.	Laboratory tasks	Laboratory	K2A_U23, K2A_K01
	Stı	udent knows libraries (R, Java) of			
0	alg	gorithms of tree and rule induction. Can	Laboratory tasks	Laboratory	K2A_U17,
8.	ma	odify their contents to obtain specialized			K2A_U18, K2A_K01
	alg	gorithms.			
9.					
18. T	each	ning modes and hours	L		
Lectu	ure 1	5/ BA /MA Seminar / Class / Project / Laboratory 15	5		
19. S	Sylla	bus description:			
Lect	ure:				
	1.	Rough Set Theory in Knowledge Discovery (roug	h sets, data reduction, dec	ision rules and algorithm, exact and app	roximate reduct).
	2.	Classification tree and classification rule induction	n (divide-and-conquer appr	oaches, separate-and-conquer approact	nes, splitting criteria,
		rule quality measures, pruning). Subgroup discov	very.		
	3.	Regression tree and regression rule induction (div	vide-and-conquer approach	nes, separate-and-conquer approaches,	splitting criteria, rule
	1	Quality measures, pruning)	d conquer annroaches, sei	parate and conquer approaches, splitting	n criteria, rule quality
	4.	measures, pruning, log-rank statistics)	u-conquer approaches, se		j chiena, fuie quality
	5.	Action rule induction (rule based action planning,	meta-actions, actionability	of data mining models)	
	6.	Association rule induction (apriori, fp-growth, rule	selection)		
	7.	Rule interestingness measures (objective measu	res, subjective measures)		
Labo	orato	ory:			
	1.	Knowledge discovery - rough sets, classification	and action rule induction -	uses cases (industry	
	2.	- seismic hazard assessment, good candidates	for fighter pilots descriptior	and selection,	
	3.	analysis of benchmark data sets from UCI Repos	itory)		
	4.	Knowledge discovery - regression and survival a	nalysis – uses cases (med	lical data – bone	
	5.	marrow transplantation, industry - methane forec	asting in coal mines, retail	 sales forecasting) 	
	6.	Association rule induction - use cases (rule selection	ction and evaluation, marke	et	
20 5	7.	basket analysis, analysis of benchmark data sets	form UCI Repository)		
20. E	xam	ination. semester 2			
21.	Prim	ary sources:			
Witte	en I.	H., Frank E., Hail M.A: Data Mining. Practical Machine I	Learning Tools and Technique	es. Fourth Edition. heory and its applications	, Morgan Kaufmann /

Elsevier 2017. Pawlak Z.: Rough Sets – Theoretical Aspect of Reasoning about Data. Kluwer Academic Press 1991. **22. Secondary sources:**

Cichosz P.: Data Mining Algorithms: Explained Using R, Wiley 2015.

23. Tot	al workload required to achieve learning outcome	95
Lp.	Teaching mode :	Contact hours / Student workload hours
1	Lecture	15/30
2	Classes	/
3	Laboratory	15/30
4	Project	/
5	BA/ MA Seminar	/
6	Other	/
	Total number of hours	30/60
24. Tot	al hours: 90	
25. Nur	nber of ECTS credits: 3	
26. Nur	nber of ECTS credits allocated for contact hours	:1
27. Nur	nber of ECTS credits allocated for in-practice ho	urs (laboratory classes, projects): 2
26. Coi	nments:	

Approved:

(date, Instructor's signature)

(date , the Director of the Faculty Unit signature)