1. C	ourse title: MACHINE LEARNING, Evolut	ionary algorithms	2. Course code ML_EA	
3. V	alidity of course description: 2018/2019			
4. Lo	evel of studies: MSc programme			
5. M	ode of studies: intramural studies			
6. Fi	ield of study:		(FACULTY SYMBOL)	
			RAU-2	
7. P	rofile of studies: ACADEMIC			
8. P	rogramme: DATA SCIENCE			
9. S	emester: 1			
10. I	Faculty teaching the course: Faculty of Automatic Co	ontrol, Electronics and Con	nputer Science	
11. (Course instructor: Dr hab. inż. Robert Czabański			
12. (Course classification: common courses			
13. (Course status: compulsory-/elective			
14. I	Language of instruction: English			
15. I	Pre-requisite qualifications: Algebra and analytic	c geometry, Calculus	and differential equations, Phy	sics, Computer
pro	gramming, Optimization methods, Numerica	l methods, Statistics a	and probability theory, Algorit	hms and data
stru	ctures. Classifiers			
16. (Course objectives: The aim of the course is making s	tudents familiar with issues	s related to evolutionary algorithms a	nd their applications to
engi	neering constructions in automation, electronics, infor	matics and biocybernetics.	. Relations between evolutionary algo	prithms and
optir	nization theory and classification methods are underlin	ed.		
17. I	Description of learning outcomes:			
Nr	Learning outcomes description	Method of assessment	Teaching methods	Learning outcomes reference code
1.	Student understands the notion of evolutionary algorithms and their importance to modeling, optimization, classification, data analyses	Credit	Lecture	K2A_W20, K2A_W25
2.	Student understands ideas and constructions behind basic types of evolutionary algorithms, genetic, memetic, simulated annealing, ant colony, particle swarm, nature inspired.	Credit	Lecture	K2A_W20, K2A_W26
3.	Student is able to elaborate, in R and Python environment, implementations of chosen evolutionary algorithms.	Laboratory tasks	Laboratory	K2A_U05, K2A_U09
4.	Student is able to compare and validate quality of different evolutionary algorithms.	Laboratory tasks	Laboratory	K2A_U09, K2A_U10

algorithms in engine		•	K2A_U08, K2A_K06			
P roject / Laboratory · onary algorithms for algorithms in engine and evolutionary a	r learning and optimization. Eve eering, automatic control, elect	ronics, biocybernetics.				
onary algorithms for algorithms in engine and evolutionary a	r learning and optimization. Eve eering, automatic control, elect	ronics, biocybernetics.	onary strategies.			
onary algorithms for algorithms in engine and evolutionary a	r learning and optimization. Eve eering, automatic control, elect	ronics, biocybernetics.	onary strategies.			
onary algorithms for algorithms in engine and evolutionary a	r learning and optimization. Eve eering, automatic control, elect	ronics, biocybernetics.	onary strategies.			
onary algorithms for algorithms in engine and evolutionary a	r learning and optimization. Eve eering, automatic control, elect	ronics, biocybernetics.	onary strategies.			
onary algorithms for algorithms in engine and evolutionary a	r learning and optimization. Eve eering, automatic control, elect	ronics, biocybernetics.	onary strategies.			
onary algorithms for algorithms in engine and evolutionary a	r learning and optimization. Eve eering, automatic control, elect	ronics, biocybernetics.	onary strategies.			
algorithms in engine and evolutionary a	eering, automatic control, elect	ronics, biocybernetics.	onary strategies.			
algorithms in engine and evolutionary a	eering, automatic control, elect	ronics, biocybernetics.	onary strategies.			
algorithms in engine and evolutionary a	eering, automatic control, elect	ronics, biocybernetics.	onary strategies.			
and evolutionary a	-	•				
	algorithms. Evaluation of effic	ciency of evolutionary algorithr				
algorithms		solidy of ovolutionary algorith	ms. Stopping criteria			
algorithms						
- J						
ilistic background a	and relations to optimization the	eory.				
icle swarm algorith	ms					
nspired programmir	ng					
hm for the traveling	salesman problem					
e estimation proble	m by using a chosen evolution	ary algorithm				
using evolutionary	algorithm. Comparison to appl	lication of a				
publicly available tool.						
e	e estimation proble		am for the traveling salesman problem e estimation problem by using a chosen evolutionary algorithm using evolutionary algorithm. Comparison to application of a			

1 Lecture 15/30 2 Classes / 3 Laboratory 15/30 4 Project / 5 BA/ MA Seminar / 6 Other / 7 Total number of hours 30/360 24. Total hours: 90 25. Number of ECTS credits: 3 26. Number of ECTS credits allocated for contact hours: 1	Lp. Teaching mode :	Contact hours / Student workload hours	
3 Laboratory 15/30 4 Project / 5 BA/ MA Seminar / 6 Other / 7 Total number of hours 30/360 24. Total hours: 90 25. Number of ECTS credits: 3	1 Lecture	15/30	
4 Project / 5 BA/ MA Seminar / 6 Other / Total number of hours 30/360 24. Total hours: 90 25. Number of ECTS credits: 3	2 Classes	/	
5 BA/ MA Seminar 6 Other 7 Total number of hours 30/360	3 Laboratory	15/30	
6 Other 7 Total number of hours 30/360	4 Project	/	
Total number of hours 30/360 24. Total hours: 90 25. Number of ECTS credits: 3	5 BA/ MA Seminar	/	
24. Total hours: 90 25. Number of ECTS credits: 3	6 Other	/	
25. Number of ECTS credits: 3	Total number of hours	30/360	
	4. Total hours: 90		
26. Number of ECTS credits allocated for contact hours: 1	5. Number of ECTS credits: 3		
	6. Number of ECTS credits allocated for contact hour	rs: 1	

Approved:

(date, Instructor's signature)

(date , the Director of the Faculty Unit signature)