(faculty stamp)

COURSE DESCRIPTION

1. C	ourse title: STATISTICS FOR DATA SCIE	NCE,		
Ma	rkov Models		2. Course code SFDS_MM	
3. V	alidity of course description: 2018/2019		I	
4. L	evel of studies: MSc programme			
5. M	lode of studies: intramural studies			
6. F	ield of study:		(FACULTY SYMBOL)	
CON	NTROL, ELECTRONIC AND INFORMATION ENGINE	ERING (MACRO)	RAU-2	
	rofile of studies: ACADEMIC			
	rogramme: DATA SCIENCE			
9. S	emester: 1, 2			
10.	Faculty teaching the course: Faculty of Automatic Co	ontrol, Electronics and Con	nputer Science	
11. (Course instructor: Prof. dr hab. inż. Tadeusz Czachór	rski		
12. (Course classification: common courses			
13. (Course status: compulsory /elective			
14.	Language of instruction: English			
16. phei	mization methods, Numerical methods, Statistics and p Course objectives: The aim of the course is making s nomena with the use of Markov models. During the lect Description of learning outcomes:	tudents familiar with issues	s related to modeling processes, s	
Nr	Learning outcomes description	Method of assessment	Teaching methods	Learning outcomes reference code
1.	Student understands the notion of stochastic process and Markov process. Understands Markov property.	Credit	Lecture	K2A_W01, K2A_W02
2.	Student understands differences between types of Markov processes.	Credit	Lecture	K2A_W03, K2A_W04
3.	Student understands notions of probability transition matrix, stationary distribution, transient and recurrent states, aperiodicity, ergodicity, reversibility.	Credit	Lecture	K2A_W04, K2A_W10
4.	Student understands constructions of sampling models, Metropolis-Hastings and Gibbs.	Credit	Lecture	K2A_W04, K2A_W10
5.	Student understands constructions and computational algorithms for hidden Markov models.	Credit	Lecture	K2A_W08, K2A_W09, K2A_W10

6.	Student is able to compute evolution of state probability distributions and stationary distributions.	Laboratory tasks	Laboratory	K2A_U01, K2A_U03, K2A_K06
7.	Student is able to estimate parameters of Markov processes.	Laboratory tasks	Laboratory	K2A_U09, K2A_U10
8.	Student is able to use and implement sampling algorithms Metropolis-Hasting and Gibbs.	Laboratory tasks	Laboratory	K2A_U09, K2A_U10, K2A_K01
9.	Student is able to use and implement all algorithms related to hidden Markov models.	Laboratory tasks	Laboratory	K2A_U09, K2A_U10, K2A_K01
Lect	eaching modes and hours ure 30 / BA /MA Seminar / Class / Project / Laboratory 30)	1	1

19. Syllabus description:

- Lecture:
 - 1. Introductory topics. Applications of Markov models in scientific research, biology, engineering, automatic control, electronics, information sciences, computer sciences, data transfer, queuing.
 - Random variables, stochastic processes, limited memory processes, Markov processes. Discrete versus continuous time Markov processes, discrete versus continuous states Markov processes, finite versus infinite number of states in Markov processes. Markov property and its consequences.
 - 3. Discrete time Markov chains. Transition probability matrix. Graph representations of states transitions. Probability distributions of states and their time evolution. Invariant and stationary distributions. Transient and persistent states. Aperiodicity and ergodicity.
 - 4. Computational methods for the analysis of Markov chains. Matrix multiplication, eigenvalue decomposition, Perron Frobenius theory, generating functions.
 - Markov chain with reversed time. Reversibility of Markov chains. Local balance condition. Applications of reversible Markov chains. Metropolis – Hastings algorithm and its applications. Variants of Metropolis – Hastings algorithm. Gibbs sampling. Simulated annealing.
 - 6. Continuous time Markov chains. Chapman Kolmogorov equation. Transition matrix. Transition intensity matrix.
 - 7. Hidden Markov models. Distributions of emission probabilities. Examples of applications. Viterbi algorithm, forward backward algorithm, Baum Welch algorithm.

Laboratory:

- 1. Simulations of Markov chain models.
- 2. Estimation of parameters of Markov chains.
- 3. Reversed time Markov chains.
- 4. Metropolis Hastings algorithm.
- 5. Hidden Markov models. Vitterbi algorithm.
- 6. Hidden Markov models. Baum-Welch algorithm

20. Examination: semester NO

21. Primary sources:

William Feller, (1957), An Introduction to Probability Theory and its Applications (Volume 1,2), John Wiley & Sons Inc. O. Haggstrom, (2002), Finite Markov Chains and Algorithmic Applications, Cambridge University Press

22. Secondary sources:

J.G. Kemeny, J.L. Snell, (1960), Finite Markov Chains, Springer

Lp.	Teaching mode :	Contact hours / Student workload hours
1	Lecture	30/30
2	Classes	/
3	Laboratory	30/30
4	Project	/
5	BA/ MA Seminar	/
6	Other	/
	Total number of hours	60/60
24. Tot	al hours: 120	
25. Nur	nber of ECTS credits: 3	
26. Nur	nber of ECTS credits allocated for contact hours:	2
27. Nur	nber of ECTS credits allocated for in-practice hou	rs (laboratory classes, projects):2

Approved:

(date, Instructor's signature)

(date , the Director of the Faculty Unit signature)