(faculty stamp)

COURSE DESCRIPTION

1. C	ourse title: STATISTICS FOR DATA SCIE	NCE,	2. Course code SFDS_MWHD		
Mo	dels with hidden data	2. Course code SFDS_MWHD			
3. V	alidity of course description: 2018/2019		<u> </u>		
4. L	evel of studies: MSc programme				
5. M	ode of studies: intramural studies				
6. F	ield of study:		(FACULTY SYMBOL)		
CON	NTROL, ELECTRONIC AND INFORMATION ENGINE	ERING (MACRO)	RAU-2		
7. P	rofile of studies: ACADEMIC		·		
	rogramme: DATA SCIENCE				
9. S	emester: 2				
	Faculty teaching the course: Faculty of Automatic Co	ontrol, Electronics and Cor	nputer Science		
	Course instructor: Prof. dr hab. inż. Andrzej Polański				
	Course classification: common courses				
	Course status: compulsory-/elective				
	Language of instruction: English				
	Pre-requisite qualifications: Algebra and analytic geo	-		er programming,	
	mization methods, Numerical methods, Statistics and p				
	Course objectives: The aim of the course is making s	tudents familiar with issue	s related to statistical models with I	nidden variables.	
17.	Description of learning outcomes:	1			
Nr	Learning outcomes description	Method of assessment	Teaching methods	Learning outcomes reference code	
1.	Student understands the notion of latent variable in the stochastic model.	Credit	Lecture	K2A_W01, K2A_W02	
2.	Student understands the EM algorithm for estimation of parameters of models with hidden data.	Credit	Lecture	K2A_W06, K2A_W07	
3.	Student is able to elaborate the algorithm and software for parameter estimation with the use of EM iterations.	Laboratory tasks	Laboratory	K2A_U06, K2A_U07, K2A_K01	
4.	Student is able to elaborate software for sematic analyses with latent variables.	Laboratory tasks	Laboratory	K2A_U03, K2A_U09, K2A_K02	
5.	Student is able to use existing software and to elaborate algorithms for estimation of parameters of mixtures of hidden Markov models.	Laboratory tasks	Laboratory	K2A_U03, K2A_K01	
		1	1		
6.					

8.			
9.			
18. T	eaching modes and hours		
Lectu	re 15 / BA /MA Seminar / Class / Project / Laboratory 15	5	

19. Syllabus description:

Lecture:

- 1. Introductory issues. Notions of missing, latent, hidden variables in data analyses. Examples of problems involving latent variables in science, engineering, optimization, parameter estimation.
- 2. Mixtures of Gaussian distributions. Parameters. Gaussian components. Component parameters. Component index as latent variable. Bayesian formula for computing conditional distribution of latent variables. Intuitive derivation of estimates of component parameters.
- General expectation maximization algorithm for iterative likelihood maximization. Complete observations, incomplete observations, latent observations. Conditional distribution of hidden variables given data and parameters guess. Integral formula for log likelihood. Expectation step. Maximization step. Jensen's inequality. Properties of the EM algorithm.
- 4. EM algorithm for mixtures of distributions. EM algorithm for censored data.
- 5. Probabilistic latent semantic analysis. Co-occurrence tables. Aspect model. Latent semantic analysis. Application of the EM algorithm.
- 6. Markov models with latent states. Hidden Markov models. Baum Welch algorithm.
- 7. Mixtures of Markov models and hidden Markov models.

Laboratory:

- 1. Mixtures of normal distributions
- 2. Probabilistic latent semantic analysis
- 3. Mixtures of Markov models and hidden Markov models.

20. Examination: semester NO

21 Dri	nary sources:							
	-							
G.J. McLachlan, T Krishnan, (2008), The EM Algorithm and Extensions, Wiley G.J. McLachlan, D. Peel, (2000), Finite Mixture Models, Wiley								
	cachian, D. Peel, (2000), Finite Mixture Models, W	ney						
	•							
	shop, (2006), Pattern Recognition and Machine Le al workload required to achieve learning outco							
23. 10								
Lp.	Teaching mode :	Contact hours / Student workload hours						
1	Lecture	15/15						
2	Classes	/						
3	Laboratory	15/15						
4	Project	/						
5	BA/ MA Seminar	/						
6	Other	/						
	Total number of hours	30/30						
24. Tot	al hours: 60							
25. Nu	nber of ECTS credits: 2							
26. Nu	nber of ECTS credits allocated for contact hou	ırs: 1						
27. Nu	nber of ECTS credits allocated for in-practice	hours (laboratory classes, projects): 1						
26. Comments:								
20. 00mments.								