

(faculty stamp)

COURSE DESCRIPTION

	Course title: ΓΑ ANALYSIS AND COMPUTATIO	DNAL INTELLIGENCI	2. Course co DAaCI	ode:
3. V	alidity of course description: 20	18/2019		
4. L	evel of studies: BA, BSc programm	ne		
5. N	1ode of studies: INTRAMURAL S	TUDIES		
6. F	ield of study: INFORMAT	TICS		
7. P	rofile of studies: comprehensive			
8. P	rogramme: ALL			
9. S	emester: VII			
10.	Faculty teaching the course: Facu	lty of Automatic Contro	ol, Electronics and Com	puter Science
11.	Course instructor: Marek S	SIKORA, Ph.D., D.Sc.		
12.	Course classification: common cou	irses		
	Course status: obligatory			
	Language of instruction: English			
	Pre-requisite qualifications: Math	ematics and Mathematic	cal Logic Algorithms a	nd Data Structures
	Course objectives: The aim of the			
	oration. The course raises elementary			
	ciation analysis. Each of them is prese			
	s) non-symbolic (support vector mach			
	osting, bagging).			
17.	Description of learning outcomes	:		
Nr	Learning outcomes description	Method of assessment	Teaching methods	Learning outcomes reference code
1	Student knows different algorithms of classification, regression,		Locutro	
	grouping, association analysis and	Final test	Lecutre, Laboratory	K1A_W02 K1A_W12
	outlier detection.		Laboratory	
2	Student can apply algorithms of			
	outlier and anomaly detection	Final test	Laboratory	K1A_U03 K1A_U08 K1A_U10
	properly, even if they need some modifications.		2400140019	K1A_U14
3	Student can apply algorithms of			
5	data grouping properly, even if			K1A_U03
	they need some modifications.	Final test	Laboratory	K1A_U08 K1A_U10
	Student can evaluate the grouping			K1A_U14
	results.			
4	Student can apply (and if it necessary – to modify) algorithms			K1A_U03
	of association analysis and evaluate	Final test	Laboratory	K1A_U08 K1A_U10
	results on the background of			K1A_U14
	training data.			

5	Student can apply (and if it necessary – to modify) algorithms of classification and evaluate results on the background of training data.	Final test	Laboratory	K1A_U03 K1A_U08 K1A_U10 K1A_U14
6	Student can apply (and if it necessary – to modify) algorithms of regression and evaluate results on the background of training data.	Final test	Laboratory	K1A_U03 K1A_U08 K1A_U10 K1A_U14
	Teaching modes and hours ure / BA /MA Seminar / Class / Proje	ect / Laboratory		

30 h (Lecture), 15 h (Laboratory),

19. Syllabus description:

Lectures and laboratories are leader in a traditional way. During the lecture the definitions, block diagrams of data analysis algorithms and computational intelligence methods are presented, together with sample applications. Students can observe the reasoning process, ask questions, participate and cooperate in algorithms modifications. Laboratories are assumed to be the place of practical analytical tasks applications, illustrating possibilities and purposefulness of using of methods presented at lectures.

Lectures:

- 1. Introduction to data analysis and exploration (typical tasks, evaluation of obtained analytical models, methods of experimental evaluation and analytical models comparison).
- 2. Introduction to RapidMiner environment.
- 3. Initial data quality evaluation. Data preprocessing.
- 4. Cluster analysis and clustering evaluation.
- 5. Association analysis (contingence tables, association rules, results evaluation).
- 6. Building classifiers of symbolic data representation (rules, trees).
- 7. Building classifiers of non-symbolic data representation (suport vector machines, naive Bayes, k-NN)
- 8. Building regression models of symbolic data representation (rules, trees).
- 9. Building regession models of non-symbolic data representation (suport vector machines, linear and non-linear regression, multiple regression, k-NN)

Collective approaches to classification and regression tasks (bagging, boosting).

Laboratory:

- 1. Data preprocessing
- 2. Clustering the data.
- 3. Association analysis.
- 4. Building and validation of classification models.
- 5. Building and validation of regression models.

20. Examination: NO

21. Primary sources:

- 1. Morzy T. Eksploracja danych. Wydawnictwo Naukowe PWN, Warszawa 2013.
- 2. Krawiec K., Stefanowski J. Uczenie maszynowe i sieci neuronowe. Wyd. Pol. Poznańskiej, 2003.
- 3. Cichosz P.: Systemy uczące się. WNT, Warszawa 2000.

4. Sikora M.: Wybrane metody oceny i przycinania reguł decyzyjnych. Monografia – Wydawnictwo Politechniki Śląskiej. Studia Informatica 33(3B), 2012 (dostępna jako pdf.).

22. Secondary sources:

- 1. Witten I.H., Frank E.: Data mining: practical machine learning tools and techniques. Morgan Kaufmann, 2011.
- 2. Han J., Kamber M.: Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers, 2001.
- 3. M. North. Data Mining for the masses. A Global Text Project Book, 2012

Lp.	Teaching mode :	Contact hours / Student workload hours
1	Lecture	30/30
2	Classes	-/-
3	Laboratory	15/45
4	Project	-/-
5	BA/ MA Seminar	-/-
6	Other	10/20
	Total number of hours	55/95
24. To	tal hours: 150	
25. Nı	mber of ECTS credits: 5	
26. Nı	mber of ECTS credits allocated for cont	act hours: 2
	where of FCTS anodite, allocated for in an	actice hours (laboratory classes, projects): 3

Approved:

(date, Instructor's signature)

(date, the Director of the Faculty Unit signature)