(foouth)		Z1-PU7 WYDANIE N1 Stro		Strona 1 z	
(laculty s					
1. Co	urse title: DATABASE SYSTEMS AND APPLICATIONS		2	2. Course code	
3. Val	idity of course description: 2018/2019				
4. Lev	vel of studies: BSc programme				
5. Mo	de of studies: intramural studies				
6. Fie	Id of study: COMPUTER SCIENCE		(F	-ACULTY SYME	BOL)
7. Pro	file of studies: COMPUTER SCIENCE		(,
8 Pro	pgramme.				
9 Ser	nestar: 5.6				
10 E	nester: 0,0				
10. Fa					
11. Co	burse Instructor: Dariusz Rafał Augustyn, PhD				
12. Co	ourse classification:				
13. Co	ourse status: compulsory				
14. La	anguage of instruction: English				
15. Pr	e-requisite qualifications: Fundamentals of database systems				
16. Co	ourse objectives: The purpose of the subject is to teach s	tudents how to	design,	build, and te	st the
appli	cations that accessing databases.				
17. De	escription of learning outcomes:				
Nr	Learning outcomes description	Method of	Teach	hing Lear	nina
	5 5 5 5 5 5 5 5 5 5	assessment	meth	ods outco	omes
				refer	ence
				CO	ue
W1	Student understands the role of crucial processes in	exam	lecture	K1A_	W09
W/2	database server	evam report	lecture	<u>κ</u> 1Δ '	W/09
VVZ	query processing	exam, report	project		VV03
W3	Student knows bases of cost query optimization	exam	lecture	K1A_	W15
W4	Methods Student knows data access methods in a light of	exam	lecture	K1A	W17
•••	physical database architecture	0, am	lootaro		
W5	Student knows base functionalities of modern CASE	project	lecture,	, K1A_	W13
	application		project		
W6	Student knows application programming interfaces	exam,	lecture,	, K1A_'	W15,
	(API) for accessing databases from applications	project	project	K1A_	W22
W7	Student understands and can apply the concept of	exams	lecture	K1A	W17
	Object-Relation mapping				
U1	Student can use selected CASE tools in design and	project,	project	K1A_	U01,
U2	Student can create and maintain databases handled	project	project	t K1A	U25
	by concrete DBMS.				
U3	Student can describe the system being developed	project, report	project	t K1A_ 	U02,
U4	Student can propose the architecture of system	project	project	t K1A	U27
	being developed taking into consideration its				
115	components Student can efficiently apply to its application, the	project	nroiect	t K1A	1126
00		Piojeci	L PIOJECI	·	020,

	concrete application programming interface for database access			K1A_U29
K1	Student can work and cooperate in a project team	Project	Project	K1A_K02
K2	Student can decompose problems into taks and she/he can prioritize them	Project	Project	K1A_K01
K3	Student can develop selected elements of	Project	Project	K1A_K04
18. Tea	ching modes and hours	1		
Lecture	e / BA /MA Seminar / Class / Project / Laboratory			
Lecture	30 h., Project 30h.			
19. Sy	llabus description:			
Lectu	ires:			
Selec like	ted aspects of architecture and operating of modern	Database Ma	nagement Sys	tem (DBMS)
physi	cal structure of database,			
mech	anism of transactions in details,			
query	optimization,			
secur	ity of DBMS and database applications.			
Progr datab	ammatic access to databases – architecture and ter ase services	chnologies use	ed for creating	the client of
Simp	e database access interfaces:			
Usag	e of JDBC interface,			
Usag	e of ADO.NET.			
Objec	ct-Relational mapping in practice:			
Usag	e of Hibernate, JPA, Spring Data,			
Usag	e of Linq to SQL, Entity Framework.			
Archi datab	tecture and technologies of building and deployin ase - Hints and recommendations	g modern ap	plications with	h access to
Proje	ct:			
Acqui	ring and maintain user and system requirements			
Analy	zing business domain – develop analysis artifacts like	selected types	s of UML diagra	ams
Propo	osing adequate architecture and technologies			
Makir	ng system project – preparing project artifacts like sele	cted types of L	JML diagrams	
Prepa	aring development environment (local/remote) enablin	g efficient worl	king in a group)
Deve	loping the application			
Testir	ng given modules and entire solution (manual and auto	omatic)		
Prepa	aring deployment version of the system			
Prepa	aring for and passing acceptance test			
20. Exa	mination: after 5 th semester – written exam			

21. Primary sources:G. Booch, J. Raumbaugh, I. Jacobson: Unified Modeling Language User GuideM.Fowler: Analysis Patterns, Reusable Object Models

22. Secondary sources:

Internet sources presented during the lectures and project Henry F. Korth H.F., Sudarshan S., Silberschatz A.: Database System Concepts Bauer C., King G.:Hibernate in Action: Practical Object/Relational Mapping Fowler M., Lewis J.: Microservices

23. Total workload required to achieve learning outcomes

Lp.	Teaching mode :	Contact hours / Student workload hours
1	Lecture	30/30
2	Classes	1
3	Laboratory	1
4	Project	30/30
5	BA/ MA Seminar	1
6	Other	1
	Total number of hours	60/60
24. Tota	hours:120	· · · · · ·
25. Num	ber of ECTS credits: 4	
26. Num	ber of ECTS credits allocated for contact ho	urs: 2
27. Num	ber of ECTS credits allocated for in-practice	hours (laboratory classes, projects): 2
26. Com	ments:	

Approved:

(date, Instructor's signature)

(date , the Director of the Faculty Unit signature)