(faculty	stamp) COURSE DESCRIP	TION	Z1-PU7	WYDANIE N1	Strona 1 z 3	
1. C	ourse title: ELECTRONICS AND MEASUREMENTS		2. Course coo	le EiM		
3. Va	3. Validity of course description: 2018/2019					
4. Le	evel of studies:BSc programme					
5. M	ode of studies: intramural studies					
6. Fi	eld of study: COMPUTER SCIENCE		(AEI)			
7. Pi	ofile of studies: general academic					
8. Pr	rogramme:					
9. Se	emester: 2, 3					
10. F	Faculty teaching the course: FACULTY OF AUTOMA	ATIC CONTROL, ELECTRO	ONICS AND CO	MPUTER SCIEN	ICE, Institute of	
Elec	tronics					
11. (Course instructor: Zdzisław Filus, PhD, DSc, professo	or of SUT				
12. (Course classification: common subjects					
13. (Course status: compulsory					
14. L	anguage of instruction: English					
15. F	Pre-requisite qualifications: Course attendants have	to possess basic knowledg	je in calculus, a	lgebra, physics ar	nd circuit theory	1
16. (Course objectives: The objective of the course is to m	nake students familiar with t	the most import	ant features of ba	isic semiconduc	tor devices
and	with the principles of operation of the elementary circu	its realized with the use of s	such componen	ts, to make them	acquire principl	les of
mea	surement of basic electrical quantities and understand	links between computer so	cience and elect	ronics.		
17. [Description of learning outcomes:					
Nr	Learning outcomes description	Method of assessment	Tead	ching methods	Le	earning
					refere	ence code
1	The student will know principles of operation	examination	lecture		K1A	W03
1.	parameters and characteristics of basic	examination	lecture		KIA_	W05
2	semiconductor devices	avamination	lacture		V1A	W07
Ζ.	principles of operation of basic analog	examination	lecture		KIA_	.w07
0	electronic circuits	· .	1 .		771 4	WIGE
3.	The student will know simple methods of description and analysis of analog linear and	examination	lecture		KIA_	_W06
	nonlinear DC circuits and basic small-signal					
4.	amplifiers The student will know the principles of	examination	lecture		K1A	W04
	measurement of voltage and current, circuits				K1A_	W07
	for digital measurement of time and frequency and basic structures and features of digital-to-					
	analog and analog-to-digital converters					
5.	The student will be able to use the learnt	tests, examination	class		K1A_	.U08,
	methods and mathematical models in the DC analysis of elementary linear and nonlinear				K1A_	.013
	analog electronic circuits					
6.	The student will be able to use the learnt	tests, examination	class		K1A_	U12
	models for the determination of characteristic					
	parameters of simple linear electronic circuits					

г

-

7.	The student will be able to use properly chosen	laboratory exercises,	laboratory	K1A_U13
	methods and equipment for measurement of	tests		
	parameters and electrical characteristics of			
	analog electronic circuits			
8.	The student will be able to elaborate	laboratory reports	laboratory	K1A_U03
	documentation including a discussion on the			
	results of a realized laboratory exercise			
9.	The student will be able to work in a team and	laboratory exercises	laboratory	K1A_K02
	take responsibility for a jointly realized task	and reports		
18. T	eaching modes and hours			
Lect	ure / BA /MA Seminar / Class / Project / Laboratory			
Sem	2 - Lecture 30 h, Class 15 h, Sem 3 – Laboratory 30 h			

19. Syllabus description:

Lecture

Passive components RLC, their description in the time and frequency domain and basic features. Logarithmic scale. Frequency responses of the low-pass RC and high-pass CR filters. Intrinsic and extrinsic semiconductors. Principle of operation and basic features of the p-n junction. Various types of semiconductor diodes: Zener diode, capacitance diode and Schottky diode. Basic rectifier circuits. Simple voltage regulator with a Zener diode. Bipolar transistor: principle of operation, basic parameters and static characteristics, DC models for various modes of operation. Biasing circuits for bipolar transistors. Small-signal equivalent circuits. CE, CB, CC amplifiers. Current sources. Unipolar transistors. Small-signal-equivalent circuit. CS, CG, CD amplifiers. Applications of unipolar transistors: current sources, voltage controlled resistance, switches, CMOS circuits. Optoelectronic devices: LED, photoresistor, photodiode, phototransistor, optocoupler. Basic theory of feedback. Influence of negative feedback on gain stability and bandwidth of an amplifier. Power amplifiers: division into classes, efficiency, distortions. Integrated operational amplifier: ideal versus real amplifier. Basic applications of the operational amplifier: inverting amplifier, noninverting amplifier, summing amplifier, subtracting amplifier, integrator, differentiator, 1st order low-pass filter, voltage-controlled current source. Analog comparators. Principles of measurement of basic electrical quantities. Digital measurement of time and frequency. Basic methods of analog-to-digital and digital-to-analog conversion.

Class

Real and ideal operational amplifier - comparison. Basic configuration of the operational amplifier and their parameters. Analysis of linear circuits with ideal operational amplifiers. Frequency response of circuits with operational amplifiers. Response of a circuit to a given excitation. Operational amplifiers in nonlinear applications. Analysis of operation of a nonsinusoidal generator based on an operational amplifier.

Bipolar transistor – principle of operation, DC equivalent circuits. Basic methods of biasing of bipolar transistors. Method of biasing and stability of the quiescent point. DC analysis of circuits with bipolar transistors.

Small-signal analysis – idea, creation of the equivalent circuit diagram of a circuit, small-signal model of the bipolar transistor (,,h" and ,,y"). Determination of basic small-signal parameters of amplifiers (voltage gain, input and output resistance). Frequency response of transistor amplifiers.

Laboratory

- 1. Semiconductor diodes
- 2. Bipolar transistor (CE)
- 3. Unipolar transistor
- 4. Semiconductor optoelectronic devices
- 5. Rectifier circuits
- 6. Sinewave oscillators
- 7. Transistor power amplifier
- 8. Nonsinusoidal generators
- 9. Linear voltage regulators
- 10. Measurement of parameters of operational amplifiers

20. Examination: semester 3 (problems and theory in a written form)

21. Primary sources:

Horowitz P., Hill W.: Art of Electronics. Cambridge University Press, 2015

Ciążyński W. E.: Elektronika analogowa w zadaniach, t.1, 3. 4. Wydawnictwo Politechniki Śląskiej, Gliwice 2009-2010

Laboratorium elektroniki I: Elementy półprzewodnikowe i układy podstawowe. Praca zbiorowa pod red. Krzysztofa Zioło; Wydawnictwo Politechniki Śląskiej, skrypt nr 2322, Gliwice 2003

Laboratorium elektroniki II: Podstawowe układy analogowe, impulsowe i cyfrowe. Praca zbiorowa pod red. Krzysztofa Zioło; Wydawnictwo Politechniki Śląskiej, skrypt nr 2323, Gliwice 2003

22. Secondary sources:

Tietze U. Schenk Ch.: Semiconductor Circuits. Springer, 2006 Filipkowski A.: Układy elektroniczne analogowe i cyfrowe. WNT, Warszawa 2006 Chwaleba A., Moeschke B., Płoszajski G.: Elektronika. WSiP, Warszawa 2008

23. Total workload required to achieve learning outcomes

· ·		
Lp.	leaching mode :	Contact hours / Student workload hours
1	Lecture	45/15
2	Classes	15/15
3	Laboratory	30/30
4	Project	1
5	BA/ MA Seminar	1
6	Other	10/40
	Total number of hours	100/100
24. Tota	I hours:200	
25. Num	ber of ECTS credits: 7	
26. Num	ber of ECTS credits allocated for contact hours:	5
27. Num	ber of ECTS credits allocated for in-practice hour	rs (laboratory classes, projects): 3
26. Com	ments:	

Approved:

(date, Instructor's signature)

(date , the Director of the Faculty Unit signature)