COURSE DESCRIPTION

1. Course title: PARALLEL COMPUTING

2. Course code: PC

3. Validity of course description: 2018/2019

4. Level of studies: 1st cycle of higher education

5. Mode of studies: intramural studies

6. Field of study: Informatics

7. Profile of studies: general academic

8. Programme: -

9. Semester: IV

10. Faculty teaching the course: Institute of Informatics

11. Course instructor: dr inż. Jacek Widuch

12. Course classification: common courses

13. Course status: obligatory

14. Language of instruction: English

15. Pre-requisite qualifications:

Prerequisites: Basics of computer programming, Algorithms and data structures I

16. Course objectives:

The aim is to introduce students into the basic issues of parallel computing

17. Description of learning outcomes:

Nr	Learning outcomes description	Method of assessment	Teaching methods	Learning outcomes reference code
1	Student possesses knowledge of parallel algorithms	Written test	Lectures	K1A_W11
2	Student possesses knowledge of metrics for parallel algorithms	Written test	Lectures	K1A_W11
3	Student possesses knowledge of parallel computing models	Written test	Lectures	K1A_W11
4	Student possesses knowledge of models with distributed memory	Written test	Lectures	K1A_W11
5	Student is able to design parallel algorithms	Written test	Lectures	K1A_U08

18. Teaching modes and hours

Lecture: 30 h., Class: -, Laboratory: -.

19. Syllabus description:

As part of the lecture the following issues are presented:

- I. Basic concepts
 - 1. Concurrency vs parallelism
 - 2. Definition of concurrent processes
 - 3. Physical and virtual processors
- II. Metrics for parallel algorithms
 - 1. Worst-case computational complexity
 - 2. Speedup

- 3. Cost of parallel computation
- 4. Efficiency, or processor utilization

III. Elementary parallel algorithms

- 1. Finding the minimum in O(log n) and O(1) time
- 2. Sorting in O(log n) time

IV. Models of parallel computation

- 1. PRAM model
- 2. Versions of PRAM: EREW, CREW, CRCW
- 3. MIMD computers
- 4. SIMD computers

V. Distributed memory models

- 1. Interconnection networks: mesh, cube, butterfly
- 2. Comparison criteria of interconnection networks

VI. Designing parallel algorithms

- 1. Problem decomposition (data decomposition, functional decomposition, others)
- 2. Analysis of computation granularity
- 3. Distribution of input, intermediate and output data
- 4. Assigning tasks to processors

20. Examination: no

21. Primary sources:

- 1. Czech Z.: "Wprowadzenie do obliczeń równoległych". Wydawnictwo Naukowe PWN, Warszawa 2013.
- 2. Czech Z.: "Introduction to parallel computing". Cambridge University Press, Cambridge, UK, 2016.

22. Secondary sources:

23. Total workload required to achieve learning outcomes

Lp.	Teaching mode :	Contact hours / Student workload hours
1	Lecture	30 / 30
2	Classes	-/-
3	Laboratory	-/-
4	Project	-/-
5	BA/ MA Seminar	-/-
6	Other (exam)	-/-
	Total number of hours	30 / 30

24. Total hours: 60

25. Number of ECTS credits: 2

26. Number of ECTS credits allocated for contact hours: 1

27. Number of ECTS credits allocated for in-practice hours (laboratory classes, projects): 0

26. Comments: -

Approved:

(date, Instructor's signature)	. (date, the Director of the Faculty Unit signature)