			Z1-PU7	WYDANIE N1	Strona 1 z 3
culty sta	amp) COURSE DESCRIPTION	L		1	JJ
. Coi	Irse title: STATISTICAL METHODS	2. Course code			
. Vali	dity of course description: 2018/2019				
. Lev	el of studies: BSc programme				
. Moo	de of studies: intramural studies				
. Fiel	d of study: COMPUTER SCIENCE	AEII			
. Pro	file of studies: general academic				
. Pro	gramme:				
. Sen	nester: 3, 4				
0. Fa	culty teaching the course: Institute of Informatics, RAu2				
1. Co	urse instructor: of. dr hab. inż. Katarzyna Stąpor				
2. Co	ourse classification: common subjects				
3. Co	urse status: compulsory				
4. La	nguage of instruction: English				
5. Pr	e-requisite qualifications: mathematical analysis and linear alg	gebra			
6. Co	urse objectives: to study principles of probability and sta	itistics and sta	atistical m	ethods of data	a analysis.
7. De	scription of learning outcomes:				
Nr	Learning outcomes description	Method of ass	sessment	Teaching me	ethods Learning outcomes reference ca
V1	Student knows and understands basic facts and theorems of probability theory as well as basic types of main distribution of random variables	Exam, tests		Lectures, exercises	K1A_W02
V2	Student knows and understands methods of statistical inference: estimation and hypothesis testing	Exam, tests Lecture exercis		Lectures, exercises	K1A_W02
٧3	Student has knowledge on modern statistical	Exam, tests	, Doing	Lectures,	K1A_W13
J1	Student can construct probability spaces for different	Exam, tests	S	Lectures.	K1A U01
	real problems			exercises	
J2	Student can compute parametric estimators of parameters of distributions and conducts hypothesis testing about them as well as computes nonparametric estimators of probability density function	Exam, tests		Lectures, exercises	K1A_U08 K1A_U12
J3	Student can use learned statistical methods in complex data analysis in reality (e.g. banking)	doing data a	inalysis	Lectures,	K1A_U08
(1	Student can work in analytic team	doing data a	nalysis	exercises	K1A_K02
2	Student does statistical analysis in responsible way (knowing consequences of bad practices on data, i.e. not lying)	doing data a	inalysis	exercises	K1A_K01
3. Tea	aching modes and hours e / BA /MA Seminar / Class / Project / Laboratorv				I
Sem. 3	3.) Lecture 30 h., Class 15 h, (Sem. 4) Laboratory 45h				
9. Sv	llabus description:				
,	Ires.				
.ecti	AT 1.51.3.				

Elements of the probability theory. Probabilistic space, probability, Bernoulli's experimental scheme, Bayes problem, discrete and continuous random variable and its characteristics, random vector and its characteristics, concept of combined, boundary and condition distribution, basic types of distributions (binomial, Poisson, geometric, exponential, normal), the law of large numbers (LLN), central limit theorem, stochastic process, time series.

Elements of mathematical statistics. Basic concepts: population, feature (variable), variable types, sample, empirical distribution and its description, distribution lists, histograms, descriptive statistics; Statistical model: sample space and parameter space, parametric and nonparametric model, statistics and its distribution; Point estimation: definition of the estimator and examples, properties of estimators – unbiasedness, conformity, estimators of the greatest credibility; Confidence intervals: their design and examples for specific parameters; Nonparametric model: nuclear density estimation of density function; Verification of statistical hypotheses: zero and alternative hypothesis, statistical test, critical area, 1st and 2nd type errors, test power, examples of test construction for expected value and variance in normal distribution, chi-square and Kolmogorov compatibility tests, independence test , tests for comparing two populations; One-way analysis of variance and its non-parametric equivalent – Kruskal Wallis test; The classic linear regression model, parameter estimation, model diagnostics, multiple regression. Elements of time series analysis.

Classes:

- 1. The construction of probabilistic spaces for specific applications, calculation of probabilities related to Bernoulli's experience, Bayes theorem
- 2. Finding distributions of random variables, calculating their basic characteristics and parameters
- 3. Obtaining the estimators with the most credibility method, testing the properties of estimators
- 4. Parametric and non-parametric tests of significance in a population with normal distribution, estimation of parameters in the classical linear regression model

Laboratory:

- 1. Excel spreadsheet selected elements. Basics of Visual Basic language, writing macros, implementation of algorithms for generating pseudorandom numbers for basic distributions, simulation of random experiments.
- 2. Determination of basic characteristics of the empirical distribution, statistical inference using selected methods of estimation and verification of hypotheses
- 3. Advanced data analysis: analysis of variance, i.e. the study of differences between many populations
- 4. Correlation and regression analysis

20. Examination: after 3rd semester - written exam

21. Primary sources:

- 1. K. Stąpor: Wykłady z metod statystycznych dla informatyków. Wyd. Polit. Śl., Gliwice 2008
- 2. J. Koronacki, J. Mielniczuk: Statystyka dla kierunków technicznych i przyrodniczych. WNT, Warszawa 2006

3. W. Krysicki i in.: Rachunek prawdopodobieństwa i statystyka matematyczna w zadaniach. Cz.1, 2, PWN Warszawa

22. Secondary sources:

2008

1. R. Zieliński: Siedem wykładów wprowadzających do statystyki matematycznej. PWN Warszawa 1990

2. M. Maliński, J. Szymszal: Statystyka matematyczna wspomagana komputerowo. Wyd. Polit. Śl., Gliwice 2000

23. Tota	al workload required to achieve learning outcome	es
Lp.	Teaching mode :	Contact hours / Student workload hours
1	Lecture	30/30
2	Classes	15/30
3	Laboratory	15/15
4	Project	1
5	BA/ MA Seminar	1
6	Other	5/0
	Total number of hours	65/75
24. Tota	al hours:140	
25. Nur	nber of ECTS credits: 5	
26. Nur	nber of ECTS credits allocated for contact hours	:: 3

26. Comments:

Approved:

(date, Instructor's signature)

(date , the Director of the Faculty Unit signature)