(faculty stamp)

COURSE DESCRIPTION

Z1-PU7 WYDANIE N1 Strona 1 z 4

	Course title: THEORY OF COM	PUTER SCIENCE	2. Course co	de: PI
3. V	Validity of course description: 20	018/2019		
4. I	Level of studies: 1 st cycle of higher	r education		
5. N	Aode of studies: intramural studie	S		
6. F	Field of study: INFORMATICS (R	RAU)		
7. P	Profile of studies: academic			
8. P	Programme: ALL			
9. S	emester: 1, 2			
10.	Faculty teaching the course: Inst	tytut Informatyki		
11.	Course instructor: dr inż. Alina l	Momot		
12.	Course classification: common	subject		
13.	Course status: compulsory			
14.	Language of instruction: English	1		
15.	Pre-requisite qualifications: non	le		
16.	Course objectives:			
The of c in t mic The - th - se phi - m - or - as - ba - ar	e aim of the lecture is to deliver computer science. The aim of the he range of creating the algorith croprocessors and introduction ver basic issues presented in the co- e concept of the algorithm emaphores, classic synchronizat losophers) achine data representation and is ganization of the central process sembler language asic information about computer overview of data access method	ie classes and labora nms, low-level progr with the basic structu ourse are: ion problems (produ implementation of an ssor unit r networks ods	tory is to purchase t amming, understand tres of the data. cer-consumer, prob	by the students the skill ding of works of lem of five
The of c in t mic The - th - se phi - m - or - as - ba - ar	computer science. The aim of the he range of creating the algorith croprocessors and introduction ve basic issues presented in the co- e concept of the algorithm emaphores, classic synchronizat losophers) achine data representation and is ganization of the central process sembler language asic information about computer	ie classes and labora nms, low-level progr with the basic structu ourse are: ion problems (produ implementation of an ssor unit r networks ods	tory is to purchase t amming, understand tres of the data. cer-consumer, prob	by the students the skill ding of works of lem of five
The of c in t mic The - th - se phi - m - or - as - ba - ar	computer science. The aim of the he range of creating the algorith croprocessors and introduction ve basic issues presented in the co- e concept of the algorithm emaphores, classic synchronizat losophers) achine data representation and is ganization of the central process esembler language asic information about computer overview of data access method	ie classes and labora nms, low-level progr with the basic structu ourse are: ion problems (produ implementation of an ssor unit r networks ods	tory is to purchase t amming, understand tres of the data. cer-consumer, prob	by the students the skill ding of works of lem of five

¹ należy wskazać ok. 5 – 8 efektów kształcenia

2	A student	has the	oreticall	y	Writt	en test		Lecture, class	K1A_U10	
	founded k	nowled	ge in the	e field						
	of formal									
	simulate s	simple a	lgorithn	ns						
	using the	Turing	machine	;						
3	A student l				Writt	en test,		Lecture, class,	K1A_W05,	
	constructio				labora	atory, ex	am	laboratory	K1A_W13,	
	computer a					•		-	K_U23	
	of each of								_	
	computer v									
	von Neum									
	explain the		1							
	control sys									
	simple inst									
	lecture cor called W n			e (so-						
4	A student of				Writt	en test,		Lecture, class,	K1A_U23	
4	programs i					atory, ex		laboratory	KIA_025	
	language (labora	atory, ex	am	laboratory		
5	A student i			vays to	Writt	en test.		Lecture, class,	K1A U19	
C	protect ind					atory, ex	am	laboratory		
	explain wh				10001	atory, en	um	lubolutory		
	resources a	and dead	lock							
6	A student	can use	a queui	ing	Writt	en test		Lecture, class	K1A_W11,	
	model to	model a	single	-					K1A_U08,	
	computer	and a co	omputer	•					K1A_U12	
	network a	nd anal	yse this	model						
18.	Feaching m				•				·	
		Lect.	C.	Lab.	Р.	Sem.				
Sem	ester 1	30	30	30	-	-				
Sem	ester 2	15	15	-	-	-				

19. Syllabus description:

Lecture:

Algorithms. Concept and examples of algorithms, notation, serial and parallel implementation of algorithms. Complexity, time and memory complexity and relationships between them, examples of algorithm complexity evaluation for serial and parallel sorting algorithms.

The operating system and its tasks. The role and functions of the operating system. Synchronization and communication between processes. The concept of system resources. Sharable and unsharable resources. TAS procedure, semaphores. Producer-consumer problem. Resource management issues, deadlock protection. Computer design elements. Registers, counters, encoders and decoders. The arithmetic and logic unit, its design and implementation. Buses and problems related to their design. Memories: types, design and implementation. Computer W design and implementation. Control signals and their role. Command cycle and computer command equations. Synthesis of a computer control system based on its command equations. Intelligent phase distributors. Microprogram memory, micro-instructions, distribution nodes.

Interrupts, the concept, organization of the interrupt system. Interrupt priorities.

Information exchange between the central unit and the environment. Concepts of elementary I/O system. The exchange circuit as an intermediary between the central unit and external devices. Construction of an exemplary exchange circuit. Direct memory access (DMA), construction and operation.

Addressing modes.

Programming languages. Machine code, assembler, assembly process, macro-assembler, examples of macrodefinition, segmentation. Higher level languages, compilers. Examples of compilation of program fragments in a high-level language. Algorithm for compilation of an arithmetic expression.

Turing machine, description, Church-Turing thesis, a characteristic table, examples of programming algorithms for Turing machine.

Formal languages. Definition of grammar, examples of grammars, BNF notation, Łukasiewicz's algebra, the notion of translation and an example of translation algorithm of arithmetic expressions from infix notation to reverse Polish

notation.

Data access methods. Lists, binary trees, network structures and their analysis in terms of search time. B-tree structures and task with optimal structure. Hashing functions and database structures based on them, collision problem.

Parallel computers. Notation of the algorithm in a canonical form, theorem on the implementation of the algorithm, serial and parallel implementation, definition of acceleration, model of data-flow computer and examples of algorithm implementation in such systems

Computer networks and their statistical models. The concept of a computer network, media and their characteristics, network topologies, a layered model. Statistical computer model as a service station (M / M / 1) and its analysis. Computer network model as M / M / 1 network. Open and closed networks. Methods for calculating load distribution in the network.

The latest trends in information technology. Information technology and genetics, quantum information systems. Class

The subject of classes is closely related to lectures and is an extension and illustration of selected problems presented during the lectures. Some of the tasks are solved by the students themselves, when solving them or after solving, there is often a discussion that allows to consider alternative ways of solving the problem. The topics of table exercises include the following issues:

- Algorithms.
- Recursion and examples of recursive algorithms.
- Semaphores and resource management.
- Design of computer instructions
- Assembler programming
- Turing machine
- Formal grammars
- Data access methods
- Queue system M/M1 and networks

Laboratory

Laboratory exercises are conducted on the first semester of full-time studies. During the laboratory, students solve the tasks indicated by the teacher, using specially prepared software for this purpose. The following exercises are carried out as part of the laboratory:

- 1. Recursive algorithms
- 2. Synchronization and communication between processes
- 3. Instructions design for the machine W
- 4. Programming in the assembly language of the W machine
- 5. Input / output system
- 6. Interrupt system
- 20. Examination: yes (after the first semester)

21. Primary sources:

1. Andrew S. Tanenbaum, Todd Austin: Structured Computer Organization. Pearson, 2013

2. John L. Hennessy, David A. Patterson: Computer Architecture, A Quantitative Approach. Morgan Kaufmann,

2012

22. Secondary sources:

1. William Stallings: Computer Organization and Architecture, Designing for Performance. Pearson, 2016 2. Noam Nisan, Shimon Schocken: The Elements of Computing Systems. Building a Modern Computer from First Principles. MIT Press, 2005

3. Allen B. Downey: The Little Book of Semaphores, 2016

Lp.	Teaching mode	Contact hours / Student workload hours
1	Lecture	45/45
2	Classes	45/45
3	Laboratory	30/30
4	Project	/
5	BA/MASeminar	/
6	Other	/
	Total number of hours	120/120
4. To	tal hours: 240	
5. Nu	mber of ECTS credits: ² 8 (respectively	y in sem. 1 and 2: 6 + 2)
6. Nu	mber of ECTS credits allocated for co	ntact hours: 4
27 Nu	mber of ECTS credits allocated for in	-practice hours (laboratory classes, projects): 2

Approved:

(date, Instructor's signature)

(date , the Director of the Faculty Unit signature)

 2 1 punkt ECTS – 30 godzin.